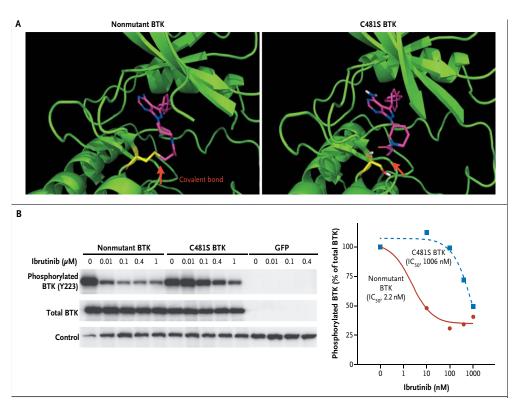
Non-C481 Mutations and Next Generation BTK Inhibitors

Constantine (Con) Tam

Disclosure of Constantine TAM

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Janssen	x					x	
AbbVie	x					x	
BeiGene	x					x	
LOXO						x	
AstraZeneca						x	


MANTLE CELL LYMPHOMA: NOW and BEYOND

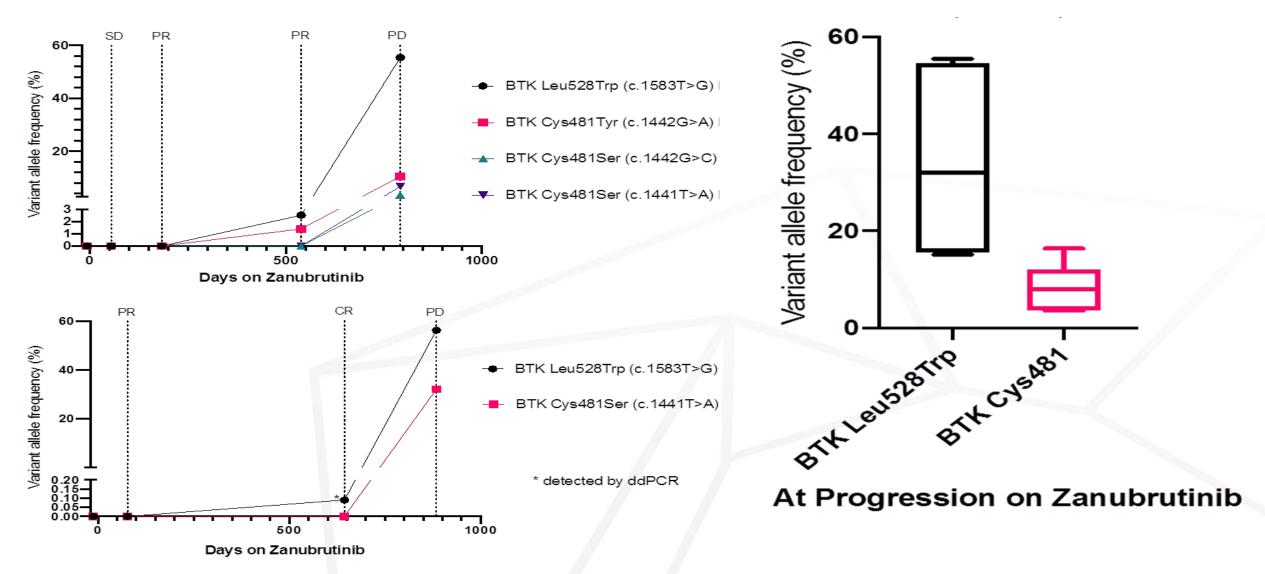
ROME June 27, 2022

Resistance Mutations to Ibrutinib

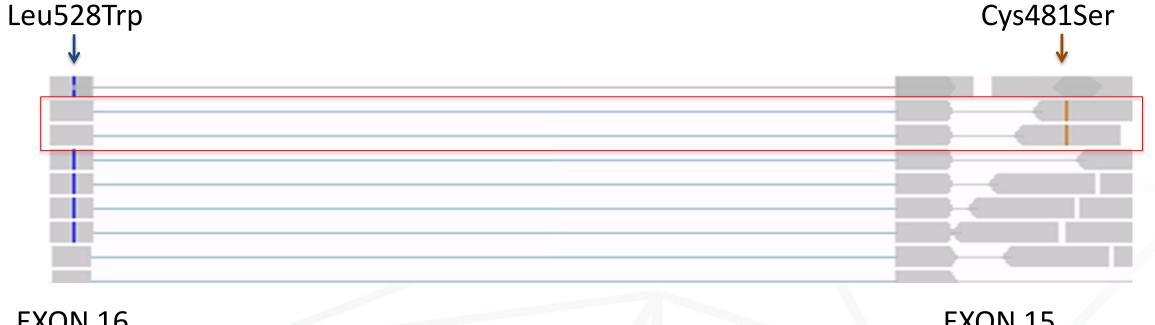
ID	Type of Relapse	BTK mutation	PLCγ2 mutation
605*	CLL	no	R665W
1694	CLL	C481F	no
883	CLL	C481S	no
934	CLL	C481S	D1140G
1602*	CLL	C481S	no
1140*	CLL	C481S	R665W, L845F, S707Y
1151	CLL	C481S	no
62	CLL		
1314	CLL		
1716	CLL	C481S	no
1833	CLL	C481S	no
2	CLL	no	R665W, S707P, S707F, R742P, L845fs

Woyach JA *et al* N Engl J Med, 2014 Maddocks *et al* JAMA Oncol, 2015

Furman RR et al, N Engl J Med, 2014

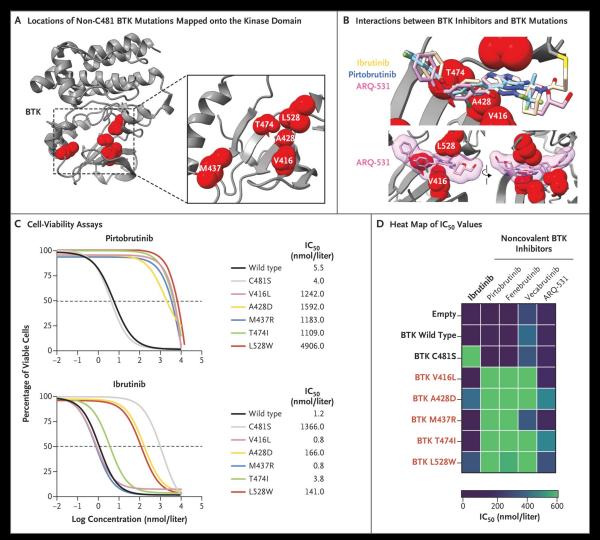

Peter MacCallum Cancer Centre Victoria Australia

BTK Leu528Trp - a Potential Secondary Resistance Mechanism Specific for Patients with Chronic Lymphocytic Leukemia Treated with the Next Generation BTK Inhibitor Zanubrutinib Secondary Resistance Mechanism


Thompson, Hanzi Sun, Haimei Xing, Bo Zhang, Yin Guo, Lesley Ann Sutton, Paolo Ghia, Richard Rosenquist, Lydia Scarfo, Silvia Bonfiglio, John F. Seymour, Mary Ann Anderson, Andrew W. Roberts, David C.S. Huang, Ye Liu, Chan Y. Cheah, David A. Westerman, Paul Sung-Hao Yeh, Constantine S. Tam and Piers Blombery

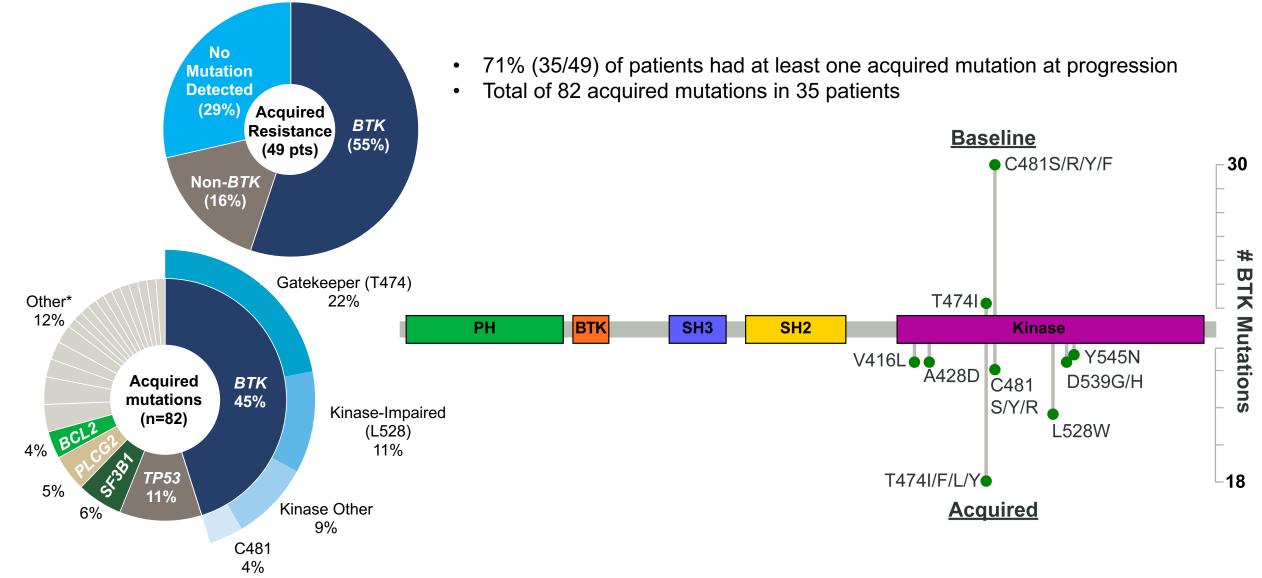
*contributed equally to the research

Leu528Trp is detectable in zanubrutinib treated patients before clinical CLL progression

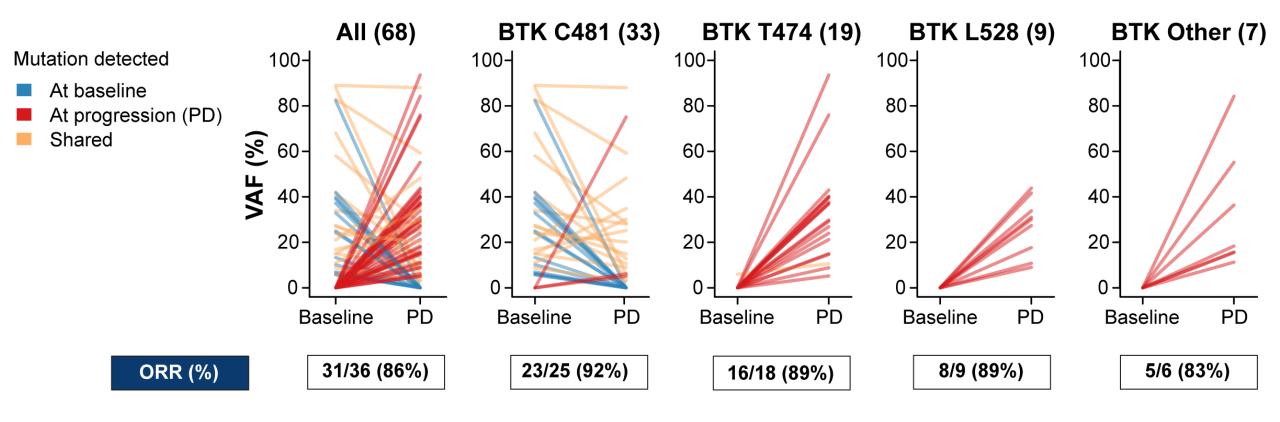


BTK Leu528Trp and Cys481 mutations are present in different cells in zanubrutinib progressors

EXON 16


EXON 15

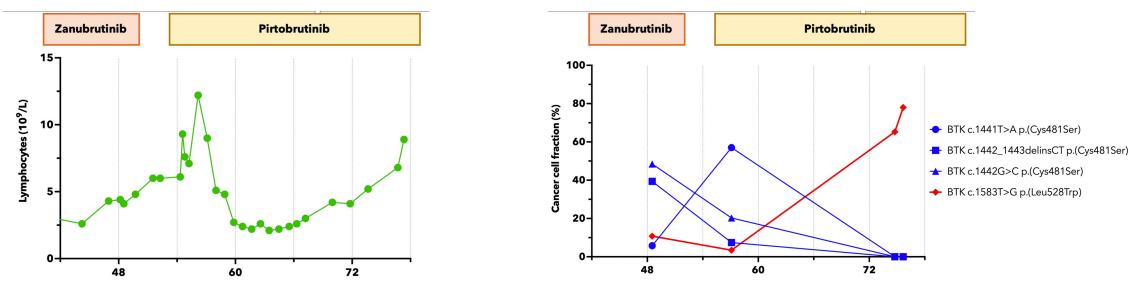
Wang E et al. N Engl J Med 2022;386:735-743



Acquired Resistance to Pirtobrutinib Converged Around Ontarget *BTK* Mutations (Non-C481)

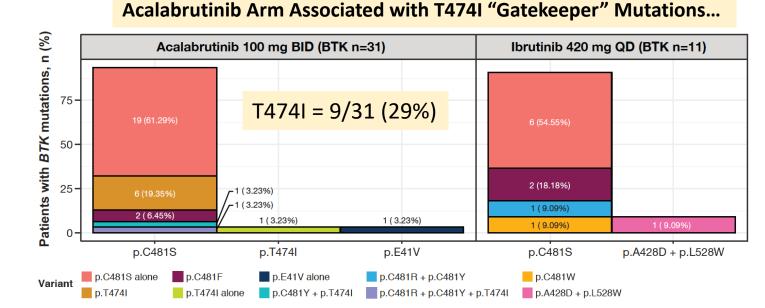
*Others: APC, ATM, CDKN2A, CDKN2B, EP300, ERBB3, IRF4, KIT, KMT2C, NOTCH1, NRAS, NTRK1, PIK3CG, RB1, SMARCA4, TNFAIP3, XPO1.

Majority of BTK Acquired Mutations were BTK T474, L528



- Decrease/clearance of C481 clones observed at progression on pirtobrutinib in 92% (22/24) patients^a
- BTK C481R/S/Y, T474, L528, other kinase mutations arose at/near progression (n=27 patients^a)
- ORR and time on treatment were similar across groups regardless of the acquired BTK mutation

Enrichment of BTK Leu528Trp mutations in patients with CLL on zanubrutinib: potential for pirtobrutinib cross-resistance


Piers Blombery,^{1,2} Ella R. Thompson,^{1,2} Thomas E. Lew,¹⁻³ Ing Soo Tiong,¹ Rory Bennett,¹ Chan Y. Cheah,⁴ Katharine Louise Lewis,⁴ Sasanka M. Handunnetti,¹ Chloe Pek Sang Tang,¹ Andrew Roberts,¹⁻³ John F. Seymour,^{1,2} and Constantine S. Tam^{1,2}

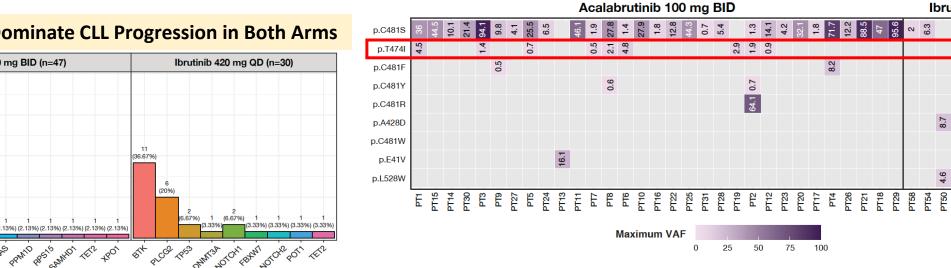
Woyach ASH 2019; Rogers Haematologica 2021; Sun ASH 2022; Blombery Blood Adv 2022; Wang NEJM 2022; Dhami Sci Signal 2022; Woyach JCO 2017; Landau Nat Comm 2017; Quinquenel Blood 2019; Estupinan Leukemia 2021; Byrd NEJM 2013; Song BJH 2022; Mato Lancet 2021; Naeem ASH 2022; Gomez Blood 2023

ICML 2023 Characterization of **Mechanisms of Resistance** in Previously Treated **Chronic Lymphocytic** Leukemia From a Head-to-Head Trial of Acalabrutinib **Versus Ibrutinib**

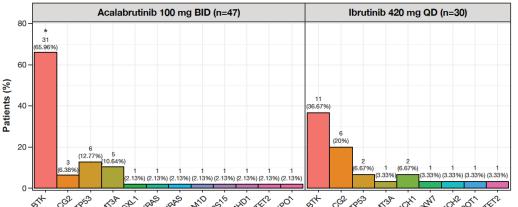
Jennifer A. Woyach¹, Daniel Jones², Wojciech Jurczak³, Tadeusz Robak⁴, Arpad Illés⁵, Arnon P. Kater⁶, Paolo Ghia⁷, John C. Byrd⁸, John F. Seymour⁹, Susan Long¹⁰, Nehad Mohamed², Gary De Jesus¹¹, Richard Lai¹¹, Gerjan de Bruin¹², Anna Butturini¹¹, Simon Rule¹³, Veerendra Munugalavadla¹¹

... However T474I Mutations Tend to be Low VAF

Ibrutinib 420 mg QD


0.5

6.6 5.7 5.6 3.4


8.7

4.6

T52

BTK Mutations Dominate CLL Progression in Both Arms

163

BTK Mutations (Oct 2023)

Drug	Resistant Mutations	Has In-Vitro Activity Against
Ibrutinib	C481S in >90% (Rare – D43H, C481 kinase dead, A428D, L528W, T474I)	L528W, T474I/L, C481 kinase dead (via HCK), V416L/M, A428D
Acalabrutinib	C481S, C481 kinase dead, T474I, E41V	L528W
Zanubrutinib	C481S, C481 kinase dead, L528W, A428D	T474I, V416L/M
Pirtobrutinib	C481 kinase dead, L528W, V416L, T474I/F/L/Y, A428D, M477I, M437R, D539G/H, Y545N	C481S

*C481 Kinase Dead = C481F, C481Y, C481W, C481G, C481R. C481T is catalytically active (Hamasy Leukemia 2017)

Woyach ASH 2019; Rogers Haematologica 2021; Sun ASH 2022; Blombery Blood Adv 2022; Wang NEJM 2022; Dhami Sci Signal 2022; Woyach JCO 2017; Landau Nat Comm 2017; Quinquenel Blood 2019; Estupinan Leukemia 2021; Byrd NEJM 2013; Song BJH 2022; Mato Lancet 2021; Naeem ASH 2022; Gomez Blood 2023; Brown ASH 2023; Brown EHA 2023; Woyach ICML 2023; Ahn IWCLL 2023; Qi Blood Advances 2023.